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/ ABSTRACT

--Wconside=Aa local measurement error theory for logistic regression

which is applied to four different methods: ordinary logistic regression

without accounting for measurement error, a functional maximum likelihood

estimate, an estimate based on linearizing the logistic function and an

estimator conditioned on certain appropriate sufficient statistics. -Our-

asymptotic theory includes a bias-variance trade off, which-wo-4e to

construct new estimators with better asymptotic and small sample properties.
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1.* INTRODUCTION

Logistic regression is the most used form of binary regression see

Berkson (1951), Cox (1970), Efron (1975), and Pregibon (1981). We observe .

independent observations (Yl,ul),... YN,xN)..., where (xi) are fixed

p-vector predictors and the (Yi) are Bernoulli variates satisfying

T T -
(1.1) Pr{Yi=l~x }= F(x.T )={l + exp(-x i I.

Under regularity conditions, the maximum likelihood estimate for 0 satisfies

N1(BL-) N(0,S " ) , where

(1.2) lim N- 1  T T T 0

N-'- i=li1

The motivation for our paper is the Framingham Heart Study (Gordon and I -.

Kannel (1968)), a prospective study of the development of cardiovascular

disease. This ongoing investigation has had an important impact on the

epidemiology of heart disease. Much of the analysis is based on the logis-

tic regression model with (Y.) being various indicators of heart disease and

(xi) being vectors of baseline risk factors such as systolic blood pressure,

serum cholesterol, smoking, etc. It is well-known that many of these base- a.
line predictors are measured with substantial error. For example, in one

group of 45-54 year old Framingham males, we estimated that 25% of the

observed variability in systolic blood pressure is really "measurement" error

due to reader-machine variability, time of day, day of week, etc. The

second author was asked by some Framingham investigators to assess the impact

of such substantial measurement error and to suggest alternatives to usual

logistic regression which account for this error. The present study is an

outgrowth of these questions.

There are three major effects of measurement error on ordinary logistic

regression. First is bias, which becomes larger with larger measurement

da AON
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error, see Michalik and Tripathi (1980). Second is attenuation, i.e., a

tendency to underestimate the disease probability for high risk cases and

overestimate for low risk cases; the nature of the attenuation is made more

explicit in Section 2. Thirdly, there is the problem of hypothesis testing;

we show the not generally well-known fact that the usual tests for individual

regression components can have level higher than the nominal level. An

example where this occurs is an unbalanced two-group analysis of covariance,

where one is interested in testing for treatment effect but the covariable

is measured with error. We believe we are the first to provide an explicit p

demonstration of this testing phenomenon. Finally, the availability of

techniques which correct for measurement error can make clear the need for

better measurement, e.g., more blood pressure readings over a period of days. p.

Our measurement error model begins with (1.1), but rather than observing

the p-vector xi we observe

(1.3) X. - xi  Oe.

where is the square root of a symmetric positive semi-definite matrix },

(Ei) are i.i.d. random vectors with identity covariance and zero first

moments. Here m is known to the experimenter and will be discussed shortly.

In most cases, some components of (xi) will be measured without error.

If we view these as the first r components of (xi), then we have

where . is positive definite. This convention is used throughout in an

. effort to reduce notation. Also, in most cases the measurement error covari-

ance $ will be unknown, so where necessary we will assume the existence of

estimators satisfying

• - .. ... . . .
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-'- ' ,

(1.5) N3-) - 0 (1)
p

We study the following four estimators.

Estimator #1 LU is ordinary logistic regression naively calculated using

the observable (Xi), satisfying

N
(1.6) 0 = /. Xi(Yi.F(XTALU))

Estimator #2 Assuming that the errors in (1.3) are normally distributed and

$ is known, one can maximize the joint likelihood for (YiXi) and then replace

by . This is a type of functional maximum likelihood ^F' resulting in the

equations

N T
(1.7) 0= i {Yi-F(x-Fi)}

i=1 + .,

(1.8) to = X. + m' {Y-F(iTF)} "

Estimator #3 This is Rc, due to Clark (1982) and based on Bayes-type esti-

mates of (xi) given (Xi) or the near linearity of F(.) on [-3,3] (Cox (1970,

pp 89-90) combined with ideas of Fuller (1980). Define (tX, as the sample

covariance and mean of the (Xi). t will be partitioned similarly to (1.4), -.X
and will be the obvious generalized inverse. Clark's c is usual logistic

regression based on

1 -

(1.9) xic = t- X

Estimator #4 We believe we are the first to introduce what we call the

sufficiency estimator 0s" Given (t,s), a sufficient statistic for xi assuming

normal errors in (1.3) is

". -
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(1.10) Ti(B,*) = X1 * m Y . -...

Again assuming normal errors, the conditional probability that (Y=l) given

, B and Ti(B,*) is

(1.11) Pr{Y =1IT} = F(OT T.(Bt))

This suggests solving for s
N"

(1.12) 0 = 1 Ti(Bt){Y-F(T(03)))

It is not difficult to show that estimators #1, 2 and 3 are weakly

consistent under conditions (2.2)-(2.4) provided min(m,N) + * There is a

minor problem with the sufficiency estimator in that equation (1.12) may have

multiple solutions not all of which lead to a consistent sequence. To guaran- 9-.

tee uniqueness and consistency as min(m,N) + - we will take s to be the
s

solution to (1.12) which is closest to
LU

I

Model (1.14) is appropriate for two situations as min(m,N) + -: (i) m

independent replicates of (xi) exist, in which case the (ei) become effectively

normally distributed and (ii) a local model in which measurement error is

small but nonnegligible. In the latter case the moments of order greater than

two of (C generally differ from that of a normal variate.

The asymptotic theory is dictated by a bias-variance trade-off. Fixing

m in (1.3) and letting N - -, the estimators are generally inconsistent, and

the resulting bias terms are complicated functionals of the error law and

give little insight into the construction of good estimators. Fixing N and

letting m + in (1.3), all estimators reduce to the same quantity. Thus to

obtain useful insight into the behavior of the estimators, it seems reason-

able to let (m,N) - simultaneously.

3---,
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In this paper we will first compute the asymptotic distributions of the

estimators as m + -, N/m X2  . In this set-up, all the estimators have

the same asymptotic covariance matrix but have different asymptotic biases.

These asymptotic biases provide a way to compare the various estimators, as

well as to verify the attenuation and hypothesis testing diffulties mentioned

earlier.

As a second step, we will use the asymptotic biases found in the first

step to suggest simple improvements of the estimators with smaller bias. We

then sketch an interesting theory for larger measurement errors, N/m4 + A2 .

A small Monte-Carlo study confirms that in large samples our asymptotics can

be useful in better understanding the measurement error problem.

2. ASYMPTOTIC DISTRIBUTIONS FOR THE USUAL METHODS

In this section, we first state the main asymptotic results for the four

2 2estimators assuming N/m -I X . At the end of the section we discuss the

statistical implications of the results through examples. Proofs are given

in Section 6. For the results in this section we require only that ( - ) =

Op(1).
p

Theorem 1: (Ordinary Logistic Regression LU) Define

(2.1) SN(y) = N 1  F (x y)x .x
i=l • 11

where F (k) is the kth derivative of F. Make the following four assump-

tions:

(2.2) N 1 xji, 2 =0() , ma xi 112 = o(N) ; A
i=l l

(2.3) There exists a positive definite matrix M such that SN(y) z M for y

in a neighborhood of a and N sufficiently large and SN(O) S;

0D
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(2.4) E(e) a0 E(ec)= III for some 85>0;

(2.S) N/n2  A 1

Then the ordinary logistic regression estimate satisfies

(2.6) IN (ALU-0) -L N(XS_'cLUPS 1) I where

CU ulim N I (F~')(x T8WO

T tB(2) xTo~ 2

Theorem 2: (Functional MILE Under the assumptions of Theorem 1,

(2.7) IN'(OF_ ) -L> N(-XS'c Fs - where c F MeLU_ lim N I F~')(xiB)tB.

Theorem 3: (Sufficiency Estimator ~ .Under the assumptions of Theorem 1,
s

(2.8) N(O -B0) -> N(0,S l)

Theorem 4: (Clark's estimator ~ .In addition to the assumptions of Theorem
C

*iassume RX t x where t is the covariance matrix of the predictors (x.i).

Then

(2.9) NI(c- 0).=1 N(-XSl -1 cLS_ I where

cLcL- lim N' A(x.-i)F(xjO)

-TT (1) T
+x1i(x 1i-x) A aF (x io)

INo

Agi Cx ) is defined by the convention in Section 1.

DISCUSSION

Two comments are in order. First, Theorem 1 provides an asymptotic theory

for logistic regression when there is no measurement error by simply taking

*-0. Second, in the first-pass asymp~totic theory developed here, the esti-
mators differ only in their limiting bias.. From this perspective, the suffi-
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ciency estimator is necessarily best because it has no limiting bias. In the

next section we produce a new asymptotic theory which casts the sufficiency

estimator in a different light. Before undertaking this task we comment on

the two examples alluded to previously.

Example #1 Consider simple logistic regression through the origin with 8 > 0.
S

We expect to see attenuation, i.e., negative bias terms in (2.6), (2.7) and

(2.9). We will call the opposite, overestimation of 8, overcompensation. It

is easy to show that -XS- c is always positive, so the functional mle over-
FS

compensates, a most surprising finding. On the other hand, for most designs

S-c Lu is negative, indicating underestimation or attenuation of B for usual

logistic regression. Somewhat surprisingly and completely at variance with

the linear regression case -Xl cLu can be positive i.e. usual logistic

regression can overcompensate. One design in which this occurs arises when

most cases have very high or very low risk.

T iExample #2 Consider a two-group analysis of covariance, x. = ( ,(-) ,di),

T 28 = (808 , 82). We measure the covariable di with error variance a . Often,

interest lies in testing hypotheses about the treatment effect 8I. A standard

method to test 81=0 is to compute its logistic regression estimate compared

to the usual asymptotic standard error. Theorem 1, through (2.6) suggests

that this test will actually approach its nominal level only if the second

component of S'cLu is zero. Denoting the second row of S by s2, we see

that the correct level is achieved only if

(2.10) 0= lim N 1N s X(2) xT Oa2 02-1 Jx2 ) T 22= lira (x.8)o 82• _

N+- i=l

The last will not hold in the common epidemiologic situation in which the

true covariables are not balanced across the two treatments. Thus, when

substantial measurement error occurs in a nonrandomized study, we can expect

U-
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bias in the levels of the usual tests. Similar results hold for multiple

logistic regression. -Of course, in a randomized study (2.10) will be true,

so that the ordinary tests would be appropriate.

3. CORRECTED ESTIMATORS

In the previous section we computed asymptotic distributions when S
2 2

N/m -) X . Both usual logistic and functional regression had asymptotic bias

terms. Since we have explicit and fairly simple expressions for these bias

terms, it seems reasonable to suppose that new estimators can be constructed

which have no asymptotic bias under the set-up of Section 2. We will define

such estimators and consider their distributions under the weaker condition

4 2
N/rn-'

There are many modifications of ordinary and functional regression which

2 2
have no asymptotic bias as N/m X A2. For ordinary logistic regression, we

have found it simplest to merely subtract an estimate of the bias, obtaining

(3.1) (1 + SI (A -l
LU 5N (LU)JNt/m}RLU

where SN(') is given by (2.1) with the observed Xi replacing xi and

JN= N I N I(rk T -

N1  (I F)(XiLU) + (I)F(2)(XT; )X •
N i= 1LU 'LU

For functional maximum likelihood, we instead modify the estimators of (xi),

replacing (1.8) by S

T
(3.2) i(B) = + (l/m){Yi-F(X 1 )}

X {to + ()oTtB(1-2F(XTO))X il

The result will be denoted by RN" We first show that these estimators do

correct for bias. The results in this section require the full force of (1.5).

_' % . . , . - . . . . • .
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Theorem 5: Suppose N/n X ( -(... -...X < and the assumptions of Theorem 1

hold. Then the modified estimators ALUm, AFm and the sufficiency estimator

s all have the same limit distribution of Theorem 3. 0
S

Actually, Theorem 5 is a corollary of this more general result.

4 2
Theorem 6: Suppose N/m4 + X (0 <L X < c) and that the conditions of Theorem I

Uf

hold. In addition, assume

(3.3) (Ci) have zero third moments and

Ell Si1146 <.. . for some 6 > 0.

Then the modified logistic, modified functional and sufficiency estimators

when placed in the form N (A-0) are asymptotically normally distributed with

covariance S-I and bias terms of the form -XS -c. For the sufficiency esti-

mator,

T
(3.4) c = (1/24)o to

x laN -1 N t"-

ir1 T I (4) T 4.
+8 +(Q-3I)OBF (x iB)x i j

where Q satisfies

The other bias terms are extremely complex.

DISCUSSION

The important points about Theorem 6 are two. First, we can expect the

modified estimators to improve on their unmodified versions; this is confirmed

to some extent in the simulation. Second, the asymptotics here show the

effect of nonnormality on the sufficiency estimator. If the errors (ei) are

normally distributed, then Q = 31 and the bias term cs = 0. Thus in large

scale studies with normally distributed measurement error, we can expect the

p.

L-
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sufficiency estimalor to perform quito well. Equation (3.4) suggest that the

sufficiency estimator will have less optimum behavior for decidedly non-normal

measurement errors.

4. MONTE-CARLO

We performed a limited Monte-Carlo study, designed to help answer three

questions. Are the corrected estimates of any value? Is Clark's estimator

worth further study? Is the asymptotic theory any guide to the performance

of the sufficiency estimator?•
3

The model for the study was

(4.1) Pr{Yi=llx i } = a + xi

2 deoe- hisurdradm..
We considered these sampling situations where Xdenotes a chi-squared random

variable with one degree of freedom:

2
(I)(a,8) = (-1.4,1.4), (xi) - Normal (0, .1x 10) , N = 300, 600;

(II)(a,8) = (-1.4,1.4). (x.) - a (x2-l)/r, 0 = .10, N = 300, 600;
1 xlI x

2
For both cases, the measurement error variance a was one third the

2 2 2 --
variance o of the true predictors (a = o /3). For each case, we considered

two sampling distributions for the measurement errors (i): (a) Normal

(0,a 2) and (b) a contaminated normal distribution, which is Normal (0,a )

with probability 0.90 and Normal (0,25a 2 ) with probability 0.10.

We believe these two sampling situations are realistic, but of course

in such a small study they are not representative. To those used to linear

regression, the sample sizes N = 300, 600 may appear large, but our major

interest is in larger epidemiologic studies where such sample sizes are common.

For example, Clark (1982) was motivated by a study with N = 2580, Hauck (1983)

quotes a partially completed study with N > 340, and we have analyzed

Framingham data for males aged 45-54 with N - 589. We would hesitate to

correct for measurement error in most small sample situations.
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2
The values of the predictor variance o and the measurement error var-

x

2
ance o are similar to those found in the Framingham cohort mentioned in the

previous paragraph when the predictor was loge ((systolic blood pressure-75)/3,
J2 2

a standard transformation. The ratio a /o = 1/3 is fairly common; Clark

also finds this ratio in her study of triglyceride. The choice of

(a,$) comes from Framingham data as well. All experiments were repeated 100

times.

In the experiment, we took m = 2 by observing independent replicates

(XilX i2) of each xi. t./2 is in this case a scalar, estimated by the sample

variance of (Xil-Xi2)/2, while tx,+ t,/2 is also a scalar, estimated by the

sample variance of (Xi+X.2)/2. We studied the following simple computational

forms of the various estimators. p

1. Ordinary logistic regression solving (1.6);

2. Clark's linearized estimator which does ordinary logistic regression
based on (1.9);

3. A one-step version of the functional maximum likelihood estimator.
On the right side of (1.8), replace 1i by Xi and 8 by ALU' obtaining
a new x. Then solve (1.7); 1

4. Corrected ordinary regression (3.1);

5. A one-step version of the corrected functional estimator. On the P .
right side of (3.2), replace 5 by ALU" Then solve (1.7);

6. A version of the sufficiency estimator obtained by solving (1.12)
but with Ti(Ot) replaced by Ti(ALU,4 ).

It can be shown that the one-step estimators defined in (3), (S), and (6)

differ from the full estimators only in the form of the asymptotic bias e.g.

the one-step version of s outlined in 6. is also asymptotically normal

4
provided N/rm o X; however the bias term generally differs from (3.4).

Sweeping conclusions cannot be made from such a small study. Basically,

we can make the following qualitative suggestions. First, the ordinary logis-

c e9tic estimator is less variable but more biased than the others; situations such

9
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as N u 600 in the study or Clark's N u 2580 are such that bias dominates and

are hence candidates for using corrected estimators, with an opposite conclu-

sion for small sample sizes where variance dominates.

A second suggestion from the tables is that when the ordinary logistic

estimator loses efficiency (Case I(b), II(b) and when N = 600), the corrected

estimators perform quite well. To some extent, these numbers justify con- S

structing the asymptotic theory of the paper, without which the corrected

estimators would not have been found.

Clark's estimator performs very well in this study when the true predic- S

tors are normally distributed (Case I), but it does have a drop in

efficiency when the predictors are highly skewed as in the chi-squared Case II.

To some extent this is expected because the estimator is based on an assump- p

tion of normally distributed predictors. It is surprising that the one-step

functional estimator computed here as well as the sufficiency estimator per-

form so well when the measurement errors are not normally distributed (Cases

I (b), II (b)), as both were defined through an assumption of normal errors.

Note too that, as predicted from the theory, the corrected functional attenu-

ates the functional estimator.

5. CONCLUDING REMARKS

Our asymptotic theory, which is interesting in itself, has proved useful

in two ways. First, heuristically, it provides a better understanding of

attenuation and it suggest a problem worth further study, namely in what

situations can we expect usual inference ignoring measurement error to be of

the wrong level, i.e., at what point does increased bias overwhelm decreased

variance?

Besides introducing the sufficiency estimator, we have also used the

asymptotic theory to construct two new estimators with reasonable large sample
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properties; all three of these along with Clark's estimator performed well in

our small Monte-Carlo study.

The pressing practical problem now appears to be to delineate those

situations in which ordinary logistic regression should be corrected for its

bias. Studies of inference and more detailed comparison of alternative-esti-

mators will be enhanced by the identification of problems where measurement S

error severely affects the usual estimation and inference.

Finally, our method of asymptotics is similar to that in the interesting

work of Wolter and Fuller (1982) and Ameniya (1982) for nonlinear regression

models. The latter derives results for nonlinear regression similar in spirit

to our Theorems 1 and 2 and even suggests corrected estimates which satisfy

our Theorem S. Because of these similarities, it is useful to emphasize that

the problem and model we have studied fundamentally differ from nonlinear

regression. The estimators we study and the results we have obtained are of

course not covered in the work of Wolter and Fuller (1982) and Ameniya (1982).

6. PROOFS OF PRIMARY RESULTS

Because the number of unknown parameters increases with increasing sample

size the classical results on consistency and asymptotic normality of maximum 1.

likelihood estimates are not imediately applicable. As noted earlier condi-

tions (2.2)-(2.4) and min(m,N) - are sufficient to insure consistency of all

the estimators in section 2 subject to the caveats regarding multiple solutions .

to (1.12) (details are available from the authors). We will prove Theorems I

and 2 and sketch the major steps in the proof of Theorem 6 for the sufficiency

estimator. Proofs of the other results, being nearly identical, are omitted.

We start with a series of lemmas. In each case we assume (2.2)-(2.5)

and consistency of . Note that i is defined by (1.7), (1.8).

-. . .i
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Lemma 1: With DN N 1 JYj(ii-Xi) we have NID = -IF(1) T
N N $oN'i0 1Ux o (1)

Proof:

N1 DN. N1N  1 -1 -lyi yi_F(-TA> d)i:

write N I .Yi(Yi-F (xTF)) AI+A 2
hN 2

where A N_ EYi(YiF( i F)) •

i  iFx is))

op l F .,-. el -'

The difference between A and its expectation is o (1), that is
p

(6.1) A N" I 1FC)(xT8) + o (1)

Also

(6.2) 1A2 1 N'I T - "F

-. N-1 {€I xi-:i ll1 il61 I Ixi il II 6- FII I'

1 N

S. N' 1(II X1Xill II ol1 + II "FIl II 11 / l /+ 1 x i 1 l
1

N'1_ ll t,11 II 11 ll/Mi J+ 11 I f- 11o 1 1 .xIx1 I - Fl

and clearly this last term is o (1). Finally (6.1), (6.2), (2.5) and consist- -

p
ency of and A complete the proof.

Lemma 2: With RN = N1 (F(X T0)X-F(x.B)x.) we have N = p(1).

T T
Proof: A Taylor series expansion of F(9. 18) about the point XTS yields

C S I N  N - T . N
(6.3) N • (Xi-xi)F(Xi0)+N _ (Xi-xi)TxiF'(Xi)+N ri.

IN 1 "

S __



S-15-

where
11 rill s- 11011 (2IlX i 1111011l )JIlX -o 2

11 II 11 (2+11 Xi  11811 ) FII2 -2

N" "

In light of (2.5) and consistency of t and AF N-11I rill = op(1). The first
1 

-

term on the r.h.s. of (6.3) equals

1I- N T T(6.4) -toM_N N ( F )F XO

1

With an argument similar to the one used in Lemma 1 we may replace iB F by

iix in each of the suimuands in (6.4) altering (6.4) only by a term which is

o p(1). The resulting quantity is
pN

(6.5) tA.-1N-j(Yi-F(T)) F(XB)

The normed sum in (6.5) has zero mean and asymptotically negligible variance

thus the first term in (6.3) is o p(1). In a similar fashion one can show the

remaining term in (6.3) is o p(1) finishing the proof. P

N T
Lemma 3: Define T = N- (Yi-F(X.8))Xi then NIT converges in law to

LU,N 1 ' 1 1 LU,

a multivariate normal random variable with mean -c LU and covariance matrix S.

Proof: N T = N2I(Yi-F(X 8))(Xi-x i )

1N T

+ N I(Y. -F(XTBI))x.
T IT aho teaoesm x -

By expanding F(XT8) in a Taylor series around x in each of the above sums

we find, after recombining termsN T

(6.6) NTLUN N 1 (Yi-F(xi8))X i

.N- (Xi-xi) (Xixi)T 8F l (ijB)

II

-N-1' ( x TOF (1) (XT )x i
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-N'1 ((X x -i T  2 F (2)ci o) x /2

where i and X2are on the line segment joining Xi and xi. The third term in

(6.6) is o (1) by virtue of its zero mean and vanishing variance, since m .
p

The first term may be written as
N N

(6.7) N J(Y .-F(XT8))x. N ( + ~ i)(ixi(6.7) 1 1....

and the second term in (6.7) also has zero mean and asymptotically negligible

variance. Assumptions (2.2), (2.3) and an appeal to the Lindeberg Central

Limit Theorem are used to show the first term in (6.7) is asymptotically

normally distributed with zero mean and covariance matrix S.

Write the fourth term in (6.6) as BI+B 2 where

B1 -N B) x1/2-..-1 "2("/
• N

Assumption (2.2) and the 2+6 moments of II %11 imply B1-E(B 1 ) = O(1). As
p

for B2 the inequality IF2) (x)-F (2) s .minC1,31x-yi) can be used to conclude

II .11 . cll B1I2 /2)N' 1 l1 l xjIj II -S (12 min(l,311 Oil m'lI %11i )

and hence (2.2) implies

cll B211 ) S (const.) Ecl ( II min (,3 1 1m2l e 11 .

The Dominated Convergence Theorem together with the Markov Inequality are

used to show this last quantity converges to zero as m and thus

BI+B 2 - F(BI) + O (1)

-A N"IB*F(2)(x To1.
-X~ ~ ~ N1jto iO 0 p(1).

Similarly the second term in (6.6) can be shown equal to
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N 
.-XN-I.tFP1 (xT ) + o+ (1).

1 1 
:.

Combining the preceding facts and noting the definition of cLU establishes

the desired result.

Proof of Theorems 1 2: In each summand appearing in (1.6) and (1.7) apply

the mean value Theorem to F(.) to arrive at

(6.8) SLU 8LU - B) = TLU,N

(6.9) SF(OF -) = TLUN +DN+ RN

where N
- N-1 VF(1) ).. T
LU iLU' i i "

1 iO,i 1~

For each i LU,i and F,i lie on the line segments joining LU and F to 8

respectively. In light of the previous results we need only show SLU and SF

converge to S in probability. We prove this for SLU only, a similar demon-

stration works for S as well.

Since Xi-x1 = (/m) 1c. and by assumption m 0, it is not difficult to

show

. N 1 NF(1) T~  T
LU 1 (Xi LUi )xixi 0 p

Thus omitting terms of order o p(1)

(6.10) N LU S(8) " N- I F(1) LU i)xxT

The norm of the right hand side of (6.10) is bounded by

(6.11) N|Ii aLU-II ( sup N'li xiil )N 1  11 xil2~1

Lemma 3 and (2.3) imply N3(OLU-S) = 0 p(1) and hence (2.2) implies that (6.11)

is Op(1). By assumption SN( 8( - S which in turn implies S"LU ] S completing

the proof.
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We now outline the proof of Theorem 6 for the sufficiency estimator.

Proof of Theorem 6 (Sufficiency Estimator): After a preliminary expansion we

arrive at

SIA-80) =N-1 N T +0j) o p(1)
I -(6.12) 1 p

-I+ 11 111I + IV *V +o (1)

where

(6.13) 1= N-1I[Y -F(xTB)]X.

NN
IVI (t B)2m2NiX(y F (XT 0)]/

1)

IV _Jao B NX( 1 I -(X 0)4

in arriving at (6.13) we have used the fact that IN( ) 0 o (1). By using an

argument similar to one employed in Lemma 3 we may write

(6.14) 1 Ni~YFxTB))x
1

1 j-0

-N Ix. ((X.-,x.) 0) F~i (xT8 /il + (1)

terms in (6.14) by their expectations alters I only by a term which is o (1).-
p
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Thus, writing F k for F ( )T

(6.15) 1 S1, ZN

*~* *1 ~tQ~BCT*B)(3)/ }

-N a- ~8~xF(2 /2 + 3  Tt t F (4/41)

+ o0(1

Q is the matrix appearing in (3.4) and ZN has a limiting N(0,1) distribution.
Similarly,

11 Bt8 i l~ F 2 /2 m 1tO F 2 (F-i)-ml8 Tt Ox. F (F-I)/21+o (1)

III *~ (Bt)Nm- Jx.F 2 /8 + a (1)

IV =tO N IN (F(l)-m(-l )F2(F-I)/2) *o (1)

a. V jFOi2~ (1)/4 .o (1)p
1 p

Combining these terms and using the identities

F (3) -3F (2)(F-1) -~ )/

= -4F 3 (F-1) F

we find

SNI(a5-0) S1 SZN Xcs + op(1)

F proving the theorem.

REMARKS

The modified estimators weaken the necessary condition for asymptotic

normality from N~m- 2 . 0(1) to Nm 4  0(l) at the expense of stronger condi-

tions on the error law. As might be expected it is possible to play this
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game indefinitely. With appropriate assumptions on the first 2k moments of

the error law one can construct a modified version of the naive estimator

LU which is asymptotically normal provided Nm-  = 0(l) for any positive inte-

ger k. Details on this extension of the theory are available from the authors.

i S°

I- p

I S.
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A NOTE FOR THE EDITOR AND REFEREES

Proof of Consistency: Of the four estimators introduced in section I wep

will prove consistency of S LU and A. employing assumptions (2.2)-(2.4) and

the condition min(N,m) - .The proof for A is similar while our conventionc

regarding multiple solutions to (1.12) will insure consistency of the suffi-

ciency estimator.

To present the proofs we need sonmc additional notation. Write X. T

(u Tv T) where v. corresponds to the components of x. measured-with error.

T T -T T T TAnalogously we write x. = (u.,'v.) for 2i given in (1.8) and X. = (u.,V.)

T Iwhere V. v+e. and E(E. m.) Let H(-) =logF(.) and note that H(-)
1 i im im

has Lipschitz norm one and IH(t)I 5.1+ ItI for all t G. R .Finally let-

N-.
1 T T T T(A.1) 9 (Y) =N_ {F(x.8)H(x y) + F(-x.B)H(-x Y)

1 1 1 1)

(A.2) GN)= N' {Y. x( + (1-Y.)H(-iJY)l

(A.3) LN -1 YHxY 1Y) _N(Y,1ViJ1J - i~ )+(-.I(xy

-N (m/2) (V _v -1

In defining (A -1) and (A.3) and elsewhere in the proof we use the sequence

{v IlN both to represent the true but unknown predictors (A.1) and as mathe-

matical variables in the argument of the function LN (A.3). The context should

make clear which interpretation is appropriate. LN is the normed functional

log-likelihood assuming normal errors and replacing by the consistent

estimate L. thus by definition

(A.4) LN(OF,{Vill) 1. N ~l~i

for allI y a iRP and {vi) I NR -r But (A.4) implies that



GN(iP) _ GN(y) for all y C RP.

Thus F maximizes the random concave function GN(.). Note that since GN(.)

is defined in terms of i it depends explicitly on B also. However this does
1 F

not affect the validity of the inequality

(A.5) GN(AF) _. sup GN(Y)

The naive estimator 0LU also maximizes a certain random concave function.

Specifically we have

NN(A.6) LNBu{i I  _SUP LN(Y,{V i } ).--+

The function gN(.) is concave for each N and (2.2) along with the inequal-

ity IH(t)ll+ltI implies that for each fixed y, {gN(Y)l is a bounded sequence of .

real numbers. Although our assumptions do not imply that {gN(.)l converges it

is true that every subsequence contains a further subsequence converging uni-

formly on closed bounded subsets of RP to some finite concave function

(Rockafellar Thm. 10.9). Assumption (2.3) insures that the limit of every

convergent subsequence possesses a unique maximum at 8. Suppose for the moment

that GN(Y)- gN(y) = op (1) for each fixed y. Pick any subsequence F,N I

from F,N) and let {gN (.)} be the corresponding subsequence from
k

g( Now from {k(.)I we can always choose a further subsequence

(') which converges to some concave function g(.) with a unique maximum
kgj

at B. Of course this implies G (Y) - g(Y) = o (1) and since FNkmaxim-
Nkj 'k,j

izes GN kj .) an appeal to Theorem II.1 of Anderson and Gill (1982) implies

- = Op(1). This shows that every subsequence of {4NI contains a

further subsequence which converges in probability to B which in turn implies

F,N- B = o (1). Thus to prove consistency of A we need only show GN(y)-gN(y) =

0(1) for fixed y. Similarly consistency of 8LU is established by showing
p-L.



LN(y,(Vi} ) gy = Op(1). To complete the task we start with

Proposition 1: Assume (2.2) and suppose min(N,m) + then LN(Y,{Vi) - gNCy)=

o (1) for each fixed y
p

Proof: The quantity under investigation may be written as TI + T2 where

1=1
Ia N'! T T T

T N L (Y i H(Xi-y) -F(xiO) H(xi-y))

T T T
2 N {(l-Yi)H(-Xiy) - F(-x.0)H(-x y)}il 1 11 1 5

Furthermore

Ta T T I {Y xT T1 N {Yi[H(Xiy) H(xiy)]) + N {(Y--F(xT )]H(xTY)}

. T1I + T12  say. 1

The Lipschitz condition on H implies

± N1" (X1~x1)TyI
-. ITlli s.NI I( Y

SL y 11 Nim 11 • ;

The last expression is o (1) provided min(m,N) T - T has zero mean and

variance N F ( ( ) 2  1
N2 ()T 2 T N"2  2

F(1 iB) (Pi1y) N 1 ((1+11 xill 11 )2} ,

which vanishes in the limit in view of (2.2). Thus TI = Op(1) and by an

identical argument T2 = O (1) concluding the proof.2 p

In addition to proving consistency of LU Proposition 1 yields the follow- S-

ing two useful corollaries.



Corollary la:

PrILN(0,VJ) S)-

Proof: From (A.1) and the definition of H1(-)

.2 sup it log ti s 1
o<t<l

pp

Corollary lb:
N

Pr{N- (m/2 11 V i,1.~f2  11 tJI 1+
i=l

- N NProof: By definition L N (0 F, vi 1 LN(O,{Vi}1) or equivalently

(A.7) N1  {Y H(RTA (1lY)H(-17

N- i F1(R0F}

Since the l.h.s. of (A.7) is almost surely nonpositive and

N
Pr(N(O(Vil)< -11 *0 it must be that

(A.8) Pr{N (m/2) L(V.-v)~(V-) .}*1

The conclusion follows from the consistency of and an application of the

inequality 1th 5 All tTA-' t, true for all positive definite matrices A.

We are now in a position to complete the proof of consistency for

Proposition 2: In addition to (2.2) suppose min(m,N) * and f* o (1),

then GN(y) - gN(y) = o (1) for each fixced y

Proof: In light of Proposition 1 it suffices to show GN(Y)_ LNY{iN

0o (1). Write this last quantity as W 1+W 2 where



NS
N 1  {Y(CxY) - H(Xiy)))

1T T
2 a N N {(l-Yi )(H(-Xy) - H(- iy)))

The Lipschitz condition on H(,) and Schwarz's inequality imply that for j=1,2

N

(A.9) I Wj I N-1 I(Xi)Y1

~.y N N 1 N1Xi-j
j=l
N

y- N I XI-Nill

i=1

N

!1 II N  1  I v i'. 12

y~ 11~I {N 11 Jiv-~~I}
i=

The r.h.s. of (A.9) is o (1) by virtue of Corollary lb and this completes the

p
proof.
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